Deer, predators, and the emergence of Lyme disease

Taal Levi,* A. Marm Kilpatrick, Marc Mangel, and Christopher C. Wilmers

This research suggests that when deer are sufficiently abundant, *Ixodes scapularis* (7). The emergence of Lyme disease has been attributed to reduced tick densities (9). However, substantial research (7, 8). Support for this hypothesis comes partly from studies of *Ixodes scapularis* ticks (7). The emergence of Lyme disease has been attributed to the century-long population recovery of deer, which are not competent hosts for transmitting *B. burgdorferi* to ticks (8). The continuing and rapid increase in Lyme disease over the past two decades, long after the recolonization of deer, suggests that other factors, including changes in the ecology of small-mammal hosts may be responsible for the continuing emergence of Lyme disease. We present a theoretical model that illustrates how reductions in small-mammal predators can sharply increase Lyme disease risk. We then show that increases in Lyme disease in the northeastern and midwestern United States over the past three decades are frequently uncorrelated with deer abundance and instead coincide with a range-wide decline of a key small-mammal predator, the red fox, likely due to expansion of coyote populations. Further, across four states we find poor spatial correlation between deer abundance and Lyme disease incidence, but coyote abundance and fox rarity effectively predict the spatial distribution of Lyme disease in New York. These results suggest that changes in predator communities may have cascading impacts that facilitate the emergence of zoonotic diseases, the vast majority of which rely on hosts that occupy low trophic levels.

Lyme disease is the most prevalent vector-borne disease in North America, and both the annual incidence and geographic range are increasing (7, 8). The emergence of Lyme disease has been attributed to a century-long recovery of deer, an important reproductive host for adult ticks. However, a growing body of evidence suggests that Lyme disease risk may now be more dynamically linked to fluctuations in the abundance of small-mammal hosts that are thought to infect the majority of ticks. The continuing and rapid increase in Lyme disease over the past two decades, long after the recolonization of deer, suggests that other factors, including changes in the ecology of small-mammal hosts may be responsible for the continuing emergence of Lyme disease. We present a theoretical model that illustrates how reductions in small-mammal predators can sharply increase Lyme disease risk. We then show that increases in Lyme disease in the northeastern and midwestern United States over the past three decades are frequently uncorrelated with deer abundance and instead coincide with a range-wide decline of a key small-mammal predator, the red fox, likely due to expansion of coyote populations. Further, across four states we find poor spatial correlation between deer abundance and Lyme disease incidence, but coyote abundance and fox rarity effectively predict the spatial distribution of Lyme disease in New York. These results suggest that changes in predator communities may have cascading impacts that facilitate the emergence of zoonotic diseases, the vast majority of which rely on hosts that occupy low trophic levels.

Taal Levi,* A. Marm Kilpatrick, Marc Mangel, and Christopher C. Wilmers

PNAS | July 3, 2012 | vol. 109 | no. 27 | 10942-10947

Deer, predators, and the emergence of Lyme disease

PNAS | Edited by William H. Schlesinger, Cary Institute of Ecosystem Studies, Millbrook, NY, and approved May 9, 2012 (received for review March 16, 2012)

Lyme disease is the most prevalent vector-borne disease in North America, and both the annual incidence and geographic range are increasing (7, 8). The emergence of Lyme disease has been attributed to a century-long recovery of deer, an important reproductive host for adult ticks. However, a growing body of evidence suggests that Lyme disease risk may now be more dynamically linked to fluctuations in the abundance of small-mammal hosts that are thought to infect the majority of ticks. The continuing and rapid increase in Lyme disease over the past two decades, long after the recolonization of deer, suggests that other factors, including changes in the ecology of small-mammal hosts may be responsible for the continuing emergence of Lyme disease. We present a theoretical model that illustrates how reductions in small-mammal predators can sharply increase Lyme disease risk. We then show that increases in Lyme disease in the northeastern and midwestern United States over the past three decades are frequently uncorrelated with deer abundance and instead coincide with a range-wide decline of a key small-mammal predator, the red fox, likely due to expansion of coyote populations. Further, across four states we find poor spatial correlation between deer abundance and Lyme disease incidence, but coyote abundance and fox rarity effectively predict the spatial distribution of Lyme disease in New York. These results suggest that changes in predator communities may have cascading impacts that facilitate the emergence of zoonotic diseases, the vast majority of which rely on hosts that occupy low trophic levels.

Lyme disease is the most prevalent vector-borne disease in North America, and both the annual incidence and geographic range are increasing (7, 8). The emergence of Lyme disease has been attributed to a century-long recovery of deer, an important reproductive host for adult ticks. However, a growing body of evidence suggests that Lyme disease risk may now be more dynamically linked to fluctuations in the abundance of small-mammal hosts that are thought to infect the majority of ticks. The continuing and rapid increase in Lyme disease over the past two decades, long after the recolonization of deer, suggests that other factors, including changes in the ecology of small-mammal hosts may be responsible for the continuing emergence of Lyme disease. We present a theoretical model that illustrates how reductions in small-mammal predators can sharply increase Lyme disease risk. We then show that increases in Lyme disease in the northeastern and midwestern United States over the past three decades are frequently uncorrelated with deer abundance and instead coincide with a range-wide decline of a key small-mammal predator, the red fox, likely due to expansion of coyote populations. Further, across four states we find poor spatial correlation between deer abundance and Lyme disease incidence, but coyote abundance and fox rarity effectively predict the spatial distribution of Lyme disease in New York. These results suggest that changes in predator communities may have cascading impacts that facilitate the emergence of zoonotic diseases, the vast majority of which rely on hosts that occupy low trophic levels.

Taal Levi,* A. Marm Kilpatrick, Marc Mangel, and Christopher C. Wilmers

PNAS | July 3, 2012 | vol. 109 | no. 27 | 10942-10947

Deer, predators, and the emergence of Lyme disease

PNAS | Edited by William H. Schlesinger, Cary Institute of Ecosystem Studies, Millbrook, NY, and approved May 9, 2012 (received for review March 16, 2012)

Lyme disease is the most prevalent vector-borne disease in North America, and both the annual incidence and geographic range are increasing (7, 8). The emergence of Lyme disease has been attributed to a century-long recovery of deer, an important reproductive host for adult ticks. However, a growing body of evidence suggests that Lyme disease risk may now be more dynamically linked to fluctuations in the abundance of small-mammal hosts that are thought to infect the majority of ticks. The continuing and rapid increase in Lyme disease over the past two decades, long after the recolonization of deer, suggests that other factors, including changes in the ecology of small-mammal hosts may be responsible for the continuing emergence of Lyme disease. We present a theoretical model that illustrates how reductions in small-mammal predators can sharply increase Lyme disease risk. We then show that increases in Lyme disease in the northeastern and midwestern United States over the past three decades are frequently uncorrelated with deer abundance and instead coincide with a range-wide decline of a key small-mammal predator, the red fox, likely due to expansion of coyote populations. Further, across four states we find poor spatial correlation between deer abundance and Lyme disease incidence, but coyote abundance and fox rarity effectively predict the spatial distribution of Lyme disease in New York. These results suggest that changes in predator communities may have cascading impacts that facilitate the emergence of zoonotic diseases, the vast majority of which rely on hosts that occupy low trophic levels.

Lyme disease is the most prevalent vector-borne disease in North America, and both the annual incidence and geographic range are increasing (7, 8). The emergence of Lyme disease has been attributed to a century-long recovery of deer, an important reproductive host for adult ticks. However, a growing body of evidence suggests that Lyme disease risk may now be more dynamically linked to fluctuations in the abundance of small-mammal hosts that are thought to infect the majority of ticks. The continuing and rapid increase in Lyme disease over the past two decades, long after the recolonization of deer, suggests that other factors, including changes in the ecology of small-mammal hosts may be responsible for the continuing emergence of Lyme disease. We present a theoretical model that illustrates how reductions in small-mammal predators can sharply increase Lyme disease risk. We then show that increases in Lyme disease in the northeastern and midwestern United States over the past three decades are frequently uncorrelated with deer abundance and instead coincide with a range-wide decline of a key small-mammal predator, the red fox, likely due to expansion of coyote populations. Further, across four states we find poor spatial correlation between deer abundance and Lyme disease incidence, but coyote abundance and fox rarity effectively predict the spatial distribution of Lyme disease in New York. These results suggest that changes in predator communities may have cascading impacts that facilitate the emergence of zoonotic diseases, the vast majority of which rely on hosts that occupy low trophic levels.

Author contributions: T.L., A.M.K., M.M., and C.C.W. designed research; T.L. performed research; T.L. analyzed data; and T.L., A.M.K., M.M., and C.C.W. wrote the paper.

The authors declare no conflict of interest.

This article is a *PNAS* Direct Submission.

1073/pnas.1204536109 Supplemental Information

Supporting information for this article is available at www.pnas.org/cgi/content/full/1073/pnas.1204536109.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204536109-supplemental.
Levi et al. in infection because hosts are born uninfected. Ties, further increases in already abundant deer have little impact on nymph abundance), we reanalyzed data from deer removal studies that recorded deer abundance and the response of nymphs (30). Deer abundance was a poor predictor of tick abundance (measured as nymphs per mouse, 2 y later (Fig. 2C), which did not decline in deer abundance. Similarly, reducing deer density from >90 km$^{-2}$ to 10 km$^{-2}$ at Bluff Point coastal reserve in Groton, CT, only reduced tick density below 20 per km2 (Fig. 2B) (31).

The model suggests that nymphal infection prevalence is only weakly influenced by the tick birth rate (Fig. 1C), because the fraction of ticks that are infected depends primarily on the consumption of the host prey. The host prey density, s, is incorporated into the model with parameters. Reproductive hosts are included with a parameter for the birth rate of ticks, v. Our model uses ecologically realistic assumptions, such as logistic population growth, a type II functional response for ticks, and a type II functional response for generalist predators. The model reveals a sharp nonlinear increase in the density of infected nymphs (DIN) and (C) nymphal infection prevalence (NIP) as the maximum predation rate (predator density x their consumption rate as prey increase to infinity) declines. The dotted, solid, and dashed lines corresponds to $v = 1.5$, 1, and 0.5 million larva born per km2 per year, respectively.

Results

Host-Vector Dynamical Model. We built a host–vector model to determine how changes in predation might impact Lyme disease risk (Fig. 1, Methods, and Table S2), and found that predation can have a strong nonlinear influence on both the density and infection prevalence of nymphs (Fig. 1 and Fig. S2). At intermediate predator densities, small changes in predation can cause large changes in Lyme disease risk. For example, a 20% reduction in predation near the inflection point in Fig. 1A more than doubles the density of infected nymphs. This nonlinearity is due to the interaction of predation with the quadratic shape of logistic population growth. Host densities near carrying capacity are by definition unproductive. Increasing the predation rate reduces host density, which increases population growth rates. When the host population is maximally productive near intermediate host densities, further increases in predation cannot be compensated for with more reproduction, which allows small increases in predation to cause greater reductions in host density (Fig. S3). Additionally, at these intermediate densities the host turnover rate is highest (maximal steady-state birth and death rates), which reduces host infection prevalence because hosts are born uninfected.

In this model, increasing deer abundance can also increase the density of infected nymphs if it increases the tick birth rate (Fig. 1B). However, the relationship between deer abundance and the tick birth rate is highly uncertain because adult ticks may be able to increasingly concentrate bloodmeals on fewer deer or alternate hosts as deer abundance declines. To explore the hypothesis that the relationship between deer and Lyme disease risk (density of infected nymphs) saturates (i.e., further increases in already abundant deer have little impact on nymph abundance), we reanalyzed data from deer removal studies that recorded deer abundance and the response of nymphs (30). Deer abundance was a poor predictor of tick abundance (measured as nymphs per mouse, 2 y later (Fig. 2C), which did not decline in deer abundance. Similarly, reducing deer density from >90 km$^{-2}$ to 10 km$^{-2}$ at Bluff Point coastal reserve in Groton, CT, only reduced tick density below 20 per km2 (Fig. 2B) (31).

The model suggests that nymphal infection prevalence is only weakly influenced by the tick birth rate (Fig. 1C), because the fraction of ticks that are infected depends primarily on the consumption of the host prey. The host prey density, s, is incorporated into the model with parameters. Reproductive hosts are included with a parameter for the birth rate of ticks, v. Our model uses ecologically realistic assumptions, such as logistic population growth, a type II functional response for ticks, and a type II functional response for generalist predators. The model reveals a sharp nonlinear increase in the density of infected nymphs (DIN) and (C) nymphal infection prevalence (NIP) as the maximum predation rate (predator density x their consumption rate as prey increase to infinity) declines. The dotted, solid, and dashed lines corresponds to $v = 1.5$, 1, and 0.5 million larva born per km2 per year, respectively.

Temporal Correlations. Over the past 30 y, correlations between deer abundance and Lyme disease were not significant or mixed in direction (Fig. 3), regardless of whether we scaled antlered-deer harvest by hunting license sales or used raw antlered-deer harvest data (Tables S3 and S4). Thus, we examined the potential role of predators as drivers of Lyme incidence with data on proxies of coyote and fox abundance (i.e., harvest by hunters). Harvests varied up to 10-fold as coyotes increased and foxes declined during the emergence of Lyme disease (Fig. 3). In Minnesota, fox hunter harvests increased 660% from a low of 78,000 in 1991 to a low of 4,000 in 2008, whereas coyote harvest increased 2,200% from a low of 2,000 in 1982 to 46,000 in recent years. In Wisconsin, coyote hunter harvests increased 660% from a low of 6,847 in 1984 to a high of 78,000 in 1991 to a low of 4,000 in 2008, whereas coyote harvest increased 2,200% from a low of 2,000 in 1982 to 46,000 in recent years. In Wisconsin, coyote hunter harvests increased 660% from a low of 6,847 in 1984 to over 78,000 in 1991 to a low of 4,000 in 2008, whereas coyote harvest increased 2,200% from a low of 2,000 in 1982 to 46,000 in recent years. In Virginia, where Lyme disease cases have only recently increased (more than 300% increase from 2005 to 2007), coyotes have also increased only recently, averaging ~3,000 in the 1990s, reaching nearly 10,000 in 2004, and increasing to a recent high of nearly 25,000 (Fig. S1).

Lyme disease cases were positively correlated with coyote abundance and negatively correlated with fox abundance in all four states (Fig. 3). The best models, using a model selection approach based on an information theoretic criterion (33), included measures of predator abundance for all four states. In contrast, deer abundance was present in the best fitting model only in Virginia (Fig. 3D).

Spatial Correlations. To test whether the spatial distribution of Lyme disease is correlated with the spatial distribution of deer or small-mammal predators, we examined Lyme disease incidence in Wisconsin, Pennsylvania, Virginia, and New York. Across space, Lyme disease incidence did not consistently increase with deer abundance. Deer and Lyme incidence were negatively correlated in Wisconsin and Pennsylvania, positively correlated in Virginia, and uncorrelated in New York (Fig. 4 C–F). In contrast, the spatial distribution of Lyme disease incidence in New York (the only state for which we had spatial data on predator abundance),
Discussion

The increase in deer during the early 20th century is thought to have allowed tick populations to grow and spread from small remnant populations, and this likely contributed significantly to the initial rise in Lyme disease cases (7). However, in recent decades, Lyme disease has continued to increase substantially in many places where deer populations have stabilized (Figs. 2 and 4). Further, we detected no relationship between the spatial distribution of Lyme disease and deer abundance in four states (Fig. 4). The weak correlations between changes in deer and Lyme disease incidence is consistent with a saturation in the probability that an adult tick finds a host (e.g., deer) with deer abundance (8) and the density of infected nymphs over 13 y (12), and there was no response in nymph abundance to a recent deer culling program in New Jersey (13). Thus, though there is convincing evidence linking deer to high nymph densities from deer exclosure experiments (Fig. 4, A and B), which suggests a more important role for variation in the abundance of predators than deer. Lyme disease is notably rare in western New York, where fox are abundant, despite having among the highest deer abundance in the state. It is worth noting that the nonlinear relationship between foxes and Lyme in Fig. 4B closely resembles model predictions (Fig. 1). Previously compiled data on catch-per-unit effort of red fox by trappers and buck harvest density match the spatial distribution of carnivores and deer derived from harvest-independent data (34).

Temporal Correlations at Smaller Spatial Scales. Harvest-independent data from multiple regions of Wisconsin also suggest that Lyme incidence is more tightly linked to changes in predator abundance (coyote increase and fox decrease leading to lower overall predation rates) than deer abundance. In Wisconsin, where Lyme disease incidence has increased greatly over the past decade, landowner wildlife surveys indicate that a fox decline and coyote increase occurred throughout the state (Fig. 5), which corroborates the statewide trends from hunter harvest data (Fig. 3). Deer observations have been stable or declining over this period (Fig. 5), although due to high deer abundance, these surveys may be a less-sensitive index for deer. However, on a fine spatial scale, deer density in management units with the highest Lyme incidence did not change over the last decade, whereas Lyme disease cases increased 300% (Fig. S7). Deer densities increased at most sites from the early 1980s until the mid 1990s, which may have caused the initial emergence of Lyme disease in Wisconsin. However, in the past 15 y, deer abundance has slowed markedly, with one-fourth of units showing no increase and several others increasing only a small percentage (Fig. S7).

Fig. 2. Relationships between deer abundance and Lyme disease risk measured by the density of infected nymphs. (A) _I. scapularis_ nymph abundance, measured as nymphs per mouse, in response to deer removal experiment in Deblinger et al. (30). (B) Nymph density (100 m$^{-2}$) as a function of deer density (per km2) from Stafford et al. (31). When all data are included, there is a saturating relationship, and there is no significant relationship without the point with the lowest deer density despite nearly 10-fold variation in deer density.

Fig. 3. Temporal trends between Lyme cases and (A) deer harvest per license, the hunter harvest of (B) coyotes, and (C) foxes are consistent with the predation hypothesis. As predicted by the model, the relationship between foxes and Lyme is nonlinear (Lyme cases are on a log scale). (D) Statistical models were compared with AIC. All models with greater than 1% model weight did not have temporally autocorrelated residuals (P > 0.05 Box-Pierce test). Model selection in Pennsylvania underestimates the importance of foxes because we use only data from the first year that coyote data were collected (fox-only model is best tested).
Fig. 4. Spatial relationships among deer, predators, and Lyme disease. (A) In New York, observation rates from the bow-hunter wildlife survey indicate that Lyme disease incidence (cases per 100,000) is positively correlated with coyotes, (B) negatively correlated with foxes, and (C) unrelated to deer. Coyote observations are scaled by foxes to highlight the transition in the predator community and its impact on Lyme disease. (D) Deer as estimated by the buck harvest density are positively (but weakly) correlated with Lyme disease incidence in Virginia counties ($R^2 = 0.1, P = 0.001$). (E) In contrast, deer density estimates (from sex-age-kill models) are negatively correlated with Lyme incidence in Wisconsin counties ($R^2 = 0.06, P = 0.05$, but driven by few data points—not significant when removed) and (F) negatively correlated in Pennsylvania deer management units ($R^2 = 0.14, P = 0.09$), where the unit with the lowest deer density has the second-highest Lyme incidence. (Insets) Darker red indicates more-abundant wildlife populations and higher Lyme incidence (in four classes: 0–10, 10–50, 50–100, and >100 cases per 100,000).

studies, and from the complete or near-complete deer removal on islands, linking deer abundance to ticks when deer are abundant has been less successful, particularly at mainland sites where there are many other potential reproductive hosts for *Ixodes* ticks and where most Lyme disease cases are contracted (reviewed in Table S1).

At the same time, over the past three decades there has been a regional red fox decline coincident with an expanding coyote population. Both spatial and temporal evidence across multiple states suggest that these changes in predator abundance are more closely linked with increases in Lyme disease than are changes in deer abundance. Our theoretical model suggested that changes in predation can in fact lead to the observed increases in Lyme risk, in that both the density and infection prevalence of nymphal ticks are sensitive to reduced predation (Fig. 1). Taken together with the empirical data on spatial and temporal patterns of Lyme incidence, deer, and predator abundance, these results suggest that the red fox declines may have resulted in increased Lyme disease risk due to the loss of predation as an ecosystem service. Detailed studies and experimental manipulation of predators could help elucidate whether controlling Lyme disease might be best accomplished by...
a combination of predator manipulation and severe reductions in deer densities necessary to reduce tick abundance.

More broadly, these results suggest a need to explore the role of predation in the community ecology of other emerging zoonotic diseases, which overwhelmingly rely on hosts that occupy low trophic levels (1). Due to the widespread eradication of large carnivores (4), top predators in many terrestrial ecosystems are now medium-sized carnivores such as coyotes (5). These medium-sized carnivores can indirectly increase the abundance and diversity of low trophic-level species, such as rodents and songbirds, by suppressing populations of smaller carnivores such as foxes (20). Strong interactions among predators (35) that lead to cascading effects on prey have been documented for over 60 systems worldwide (21). As top predators are extirpated in some parts of the world, and recolonize in others, it will be important to understand the consequences for community composition and for the abundance of low trophic-level species in particular. Such restructuring of predator communities may have unintended consequences for human disease.

Methods

Host-Vector Disease Model. We use a vector-borne, susceptible-infected (36) modeling framework that describes the dynamics of ticks and small-mammal hosts, and includes parameters to account for the density of alternate hosts and deer. We group multiple species into a functional group of small-mammal hosts with density, \(N_m \). The small-mammal host population growth rate, \(G(N_m) \), is logistic with maximum intrinsic growth rate, \(r \), and carrying capacity, \(K \). The mortality rate, \(M(N_m) \), follows a Holling type III functional response, which is characteristic of prey-switching generalist predation, with maximum predation rate, \(a \), half-saturation parameter, \(c \), and predator density, \(P \) (37-39). This functional response can exhibit alternative stable states in a small region of parameter space, but we stress that our results depend only on an S-shaped functional response, which is characteristic of switching or aggregating behavior in response to more-abundant prey (Fig. S3). An S-shaped functional response is also obtained with a type II functional response when predators respond numerically to increasing prey density (i.e., a combined numerical and functional response; SI Text, Parameters and Derivations).

The differential equation for the total host population is

\[
\frac{dN_m}{dt} = G(N_m) - M(N_m)
\]

The small-mammal host population consists of susceptible, \(S_m \), and infected, \(I_m \) classes. Susceptible hosts become infected with probability \(T_{in} \) when bitten by an infected nymph, \(I_n \). A fraction of tick bites occur on incontinent "dilution" hosts, \(F \), so that these hosts divert blood meals away from small mammals but also increase total host abundance. The tick bite rate, \(B(N_m + F) \), follows a type II functional response. Because each tick life stage requires a single blood meal, the functional response saturates at 1 as the abundance of hosts increases (i.e., all ticks can feed if there are infinite hosts). The half-saturation parameter, \(b_0 \), represents the density of small mammals where half of ticks would be expected to feed. Thus, the tick bite rate can be interpreted as the fraction of ticks that successfully feed given the total population of hosts, \(N_m + F \).

The differential equations for susceptible and infected small-mammal hosts are

\[
\frac{dS_m}{dt} = G(N_m) - T_{in} \frac{S_m}{N_m + F} B(N_m + F) - \frac{S_m}{N_m} M(N_m)
\]

\[
\frac{dI_m}{dt} = T_{in} \frac{S_m}{N_m + F} B(N_m + F) - \frac{I_m}{N_m} M(N_m)
\]

where susceptible hosts are created by birth and lost by infection or predation, and infected hosts are created by infection and lost by predation.

We assume no increase in predation risk associated with being infected. Therefore, the relative abundance of the susceptible and infected classes determines the relative predation rate of each class.

Larval ticks, \(S_n \), which are all susceptible, have birth rate \(\nu \) and per-capita death rate \(\mu_n \). We use a constant birth rate that can be varied independently, because it is unknown how vertebrate biomass and community composition influence the tick birth rate. Any larval tick that successfully feeds on either a small-mammal host or dilution host leaves this class so that the differential equation for larva is

\[
\frac{dS_n}{dt} = \nu - \frac{\beta(N_m + F)S_n}{b_0 + N_m + F} - \mu_n S_n
\]

Nymphs die at rate, \(\mu_n \), and also leave their class by successfully feeding. Nymphs become infected when larva successfully contract Borrelia from an infected host (i.e., this depends on the frequency of infected hosts) with probability \(T_{in} \). Thus, the differential equation for infected nymphs, \(I_n \), is

\[
\frac{dI_n}{dt} = \frac{I_m}{N_m + F} \beta(N_m + F)S_n - \mu_n I_n
\]

Uninfected nymphs, \(J_n \), can be uninfected because a larval tick fed on a susceptible or dilution host or because a larval tick fed on an infected host but did not contract Borrelia. The equation for uninfected nymphs thus has an additional term to account for the probability that feeding on an infected host did not cause infection, but can be simplified to

\[
\frac{dJ_n}{dt} = \frac{S_n + F}{b_0 + N_m + F} \beta(N_m + F)S_n - \mu_n J_n
\]

We solved for the steady states as a function of the steady-state small-mammal density \(N_m \). The closed-form solutions, which are presented in SI Text, Steady-State Solutions, explicitly demonstrate the strength of the known multiple drivers of Lyme disease.

Data Analysis. Spatial Analysis. New York enlists bow hunters to survey wildlife from tree stands. We averaged the observation rates of each species from 2005 to 2007 in each management unit to compare with Lyme disease incidence from 2006 to 2008. Lyme disease incidence is recorded at a county scale, so we allocated incidence to management units as a weighted average based on the relative area of each county in each wildlife management unit groupings.

In Virginia we used buck harvest per square mile reported in the Virginia deer management plan (14) as a proxy for deer density. Both the harvest data and Lyme disease data are on the county spatial scale. Wisconsin and Pennsylvania produce deer density estimates using the sex-age-kill model (40), which estimates density in management units using data on harvest, age, and sex structure, and fawn-to-doe ratios. Lyme disease incidence is recorded at a county scale. In Pennsylvania, wildlife management units are smaller than counties, so we allocated Lyme incidence to management units as above. In Wisconsin, wildlife management units are smaller than counties, so we allocated deer density to counties based on the relative area of each wildlife management unit in each county. For Wisconsin, we additionally analyze changes in deer densities since 1981 in 25 randomly chosen management units intersecting counties with the highest incidence (Fig. S7).
coyote- and fox-hunting regulations, including very long or continuous seasons and no bag limits. We therefore conduct our analysis on the subset of large states from which we could obtain hunter harvest time-series data: Wisconsin, Minnesota, Pennsylvania, and Virginia (New York does not collect hunter harvest data); the exception is Pennsylvania, for which we have only total harvests (bunner + trapped) data, which are not as reliable an index for foxes but are likely representative of the population expansion of coyotes as they colonized the state.

As a proxy for deer abundance, we use antlered deer harvest, which is routinely used by wildlife management agencies to monitor trends in deer abundance. Antlered deer harvest is a robust estimate of the statewide deer population due to the large number of hunters that sample the deer population with success rates dependent on the abundance of deer. We scale antlered deer harvest by hunting license sales to capture changes in hunter participation (Fig. S5). Analysis of the hunter functional response from 10 datasets supports a type I functional response (41), which suggests that hunting pressure rates are expected to increase linearly, rather than simply monotonically, with deer density. Additionally, hunter success rates (Fig. S5; <25% in MN, PA, and WI, and <40% in VA) suggest increases in deer abundance would be represented by increased harvests, because hunters are not saturated with deer. Longitudinal hunter harvest data has been shown to correlate well with trends in deer density and has been used in the literature not only for crude population trends but also for more sophisticated time-series analysis (42-45).

Combining the available wildlife harvest time series, we evaluate the relative support of the predation and deer hypotheses. We additionally analyze antlered deer harvest data not corrected for license sales (Table S3) and harvests of deer, coyotes, and foxes all scaled by hunting license sales (Table S4) to ensure that our results are statistically robust to changes in hunter participation. We use deer (big game) license sales throughout because small-game hunters focus on a variety of species, and individuals may only report that they are coyote or fox hunters if they opportunistically kill one of these species incidental to other activities (46). The strength of each candidate model was evaluated using corrected Akaike Information Crite- rion (33, 47).

ACKNOWLEDGMENTS. We thank John Erb and the Minnesota and Wisconsin Departments of Natural Resources; the Pennsylvania Game Commission; Mike Fies and the Virginia Department of Game and Inland Fisheries; and Edward Kautz and the New York Department of Environmental Conservation for collecting and sharing data. We thank Yiwei Wang for original artwork in Fig. 1. This work was supported by a National Science Foundation (NSF) Graduate Research Fellowship (to T.L.L.); NSF Grants EF-0924195 (to M.M.), EF-0914866 (to A.M.K.), and 0963022, 0729707, and 0713994 (to C.C.W.); and National Institutes of Health Grant 1R01AI090159 (to A.M.K.).